DOI: http://doi.org/10.26524/cm45

Journal of Computational Mathematica

Open Access

The Eccentric-Distance Sum of Cycles and Related Graphs

Sujitha S^{1*} and Surya Armstrong E²
^{1,2}Department of Mathematics Holy Cross College(Autonomous)
Nagercoil, Tamil Nadu, India.

Abstract

Let G = (V, E) be a simple connected graph. The eccentric-distance sum of G is defined as $\xi^{ds}(G) = \sum_{u \in V(G)} e(u)D(u)$ where e(u) is the eccentricity of the vertex u in G and D(u) is the sum of distances between u and all other vertices of G. In this paper, we establish formulae to calculate the eccentric-distance sum for some cycle related graphs, namely C_n , complement of C_n , shadow of C_n and the line graph of C_n . Also, it is shown that, the eccentric-distance sum of C_n is less than the eccentric-distance sum of shadow of C_n for all $n \geq 3$.

Key words: Distance, Eccentricity, Eccentric-Distance Sum.

AMS Classification 2010: 05C12.

1. Introduction

By a graph G = (V, E), we mean a finite undirected connected graph without loops or multiple edges. The order and size of G are denoted by n and p respectively. For basic definitions and terminologies we refer to [1]. For vertices u and v in a connected graph G, the distance d(u, v) is the length of a shortest u - v path in G. A u - v path of length d(u, v) is called a u - v geodesic. The eccentricity e(v) of a vertex v in G is the maximum distance from v and a vertex of G. The minimum eccentricity among the vertices of G is the radius, rad G or r(G) and the maximum eccentricity is its diameter, diam G of G. A u - v walk of G is a finite, alternating sequence $u = u_0 e_1 u_1 e_2 \cdots e_n u_n = v$ of vertices and edges in G beginning with vertex u and ending with vertex v such that $e_i = u_{i-1}u_i$, $i = 1, 2, \cdots, n$. The number n is called the length of the walk. A walk in which all the vertices are distinct is called a path. A closed walk $u_0, u_1, u_2, \cdots e_n u_n$ in which $n \geq 3$ and $u_0, u_1, u_2, \cdots e_n u_n u_n$ are distinct is called a cycle of length v and is denoted by v. The complement v of a simple graph v is a simple graph with vertex set v, two vertices being adjacent in v if and only if they are not adjacent in v. The line graph v is a graph in which

^{1*}sujivenkit@gmail.com, ²suryaarmstrong2579@gmail.com

DOI: http://doi.org/10.26524/cm45

the vertices are the lines of G and two points in L(G) are adjacent if and only if the corresponding lines are adjacent in G. The shadow graph S(G) of a connected graph G is constructed by taking two copies of G say G' and G''. Join each vertex u' in G' to the neighbours of the corresponding vertex u'' in G''. The union of two graphs $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ is a graph G(V, E) where $V = V_1 \cup V_2$ and $E = E_1 \cup E_2$. The sum $G_1 + G_2$ is the graph $G_1 \cup G_2$ together with all the lines joining points of V_1 to the points of V_2 . In [2], Gupta, Singh and Madan introduced a novel topological descriptor which is called eccentric-distance sum index (EDS) and then the concept was studied by various authors. The eccentric-distance sum of G is defined as $\xi^{ds}(G) = \sum_{u \in V(G)} e(u)D(u)$ where e(u) is the eccentricity of the vertex u

in G and D(u) is the sum of distances between u and all other vertices of G. In this paper, we establish formulae to calculate the eccentric-distance sum for some cycle related graphs, namely C_n , complement of C_n , Shadow of C_n and the line graph of C_n . Throughout this paper G denotes a connected graph with at least three vertices. $\xi^{ds}(K_n) = n(n-1)$. L(G) is isomorphic to G if and only if G is a cycle.

2. Main results

Theorem 2.1 The eccentric distance sum of, the sum of two cycles of length n

is
$$\xi^{ds}(C_n + C_n) = 2n \times \lfloor n/2 \rfloor \times [n + (\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor)]$$

Proof: Clearly the graph $C_n + C_n$ has 2n number of vertices.

$$e(v_{i}) = \lfloor n/2 \rfloor \text{ where } i = 1, 2, 3, \dots, 2n$$

$$D(v_{i}) = 1 + 1 + 2 + \dots + \lfloor (n-1)/2 \rfloor + \lfloor n/2 \rfloor + \underbrace{(1+1+\dots+1)}_{(n \text{ times})}$$

$$= 0 + 0 + 1 + 1 + 2 + \dots + \lfloor (n-1)/2 \rfloor + \lfloor n/2 \rfloor + n(1)$$

$$= [0 + 0 + 1 + 1 + 2 + \dots + \lfloor (n-1)/2 \rfloor + \lfloor n/2 \rfloor] + n$$

$$= [\sum_{j=1}^{n+1} \lfloor (j-1)/2 \rfloor] + n$$

$$= [\sum_{j=1}^{n+1} \lfloor (j-1)/2 \rfloor] + n$$

$$\xi^{ds}(C_{n} + C_{n}) = \sum_{i=1}^{2n} e(v_{i})D(v_{i})$$

$$= e(v_{1})D(v_{1}) + \dots + e(v_{2n})D(v_{2n})$$

$$= \lfloor n/2 \rfloor [(\sum_{j=1}^{n+1} \lfloor (j-1)/2 \rfloor) + n] + \dots + \lfloor n/2 \rfloor [(\sum_{j=1}^{n+1} \lfloor (j-1)/2 \rfloor) + n](2n \text{ times})$$

^{1*}sujivenkit@gmail.com, 2suryaarmstrong2579@gmail.com

DOI: http://doi.org/10.26524/cm45

$$=2n\left\lfloor n/2\right\rfloor \left[\left(\sum_{j=1}^{n+1}\left\lfloor (j-1)/2\right)\right\rfloor\right)+n\right]$$

Hence
$$\xi^{ds}(C_n + C_n) = 2n \times \lfloor n/2 \rfloor \times [n + (\sum_{i=1}^{n+1} \lfloor (i-1)/2) \rfloor)].$$

Remark 2.2 $\xi^{ds}(C_n) = n \times \lfloor n/2 \rfloor \times (\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor)$ Proof: The eccentricity of any vertex in $(C_n + C_n)$ is same as the eccentricity of any vertex in C_n . Also, the distance sum of any vertex in $(C_n + C_n)$ is equal to n plus the distance sum of any vertex in C_n . Thus $\xi^{ds}(C_n) = n \times \lfloor n/2 \rfloor \times (\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor)$.

Theorem 2.3 The eccentric distance sum of the sum of two cycles of length n and m where $n \neq m$ is $\xi^{ds}(C_n + C_m) = n \times \lfloor n/2 \rfloor \times [m + (\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor)] + m \times \lfloor m/2 \rfloor \times [m+(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor)] + m \times \lfloor m/2 \rfloor \times [m+(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor)] + m \times [m/2] \times [m+(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor)] + m \times [m/2] \times [m+(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor)] + m \times [m/2] \times [m+(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor)] + m \times [m/2] \times [m+(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor)] + m \times [m/2] \times [m+(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor)] + m \times [m/2] \times [m+(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor)] + m \times [m/2] \times [m+(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor)] + m \times [m/2] \times [m+(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor)] + m \times [m/2] \times [m+(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor)] + m \times [m/2] \times [m+(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor)] + m \times [m/2] \times [m+(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor)] + m \times [m/2] \times [m+(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor)] + m \times [m/2] \times [m+(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor)] + m \times [m/2] \times [m+(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor)] + m \times [m/2] \times [m+(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor)] + m \times [m/2] \times [m+(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor)] + m \times [m/2] \times [m+(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor)] + m \times [m/2] \times [m+(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor)] + m \times [m/2] \times [m+(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor)] + m \times [m/2] \times [m+(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor)] + m \times [m/2] \times [m+(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor)] + m \times [m/2] \times [m+(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor)] + m \times [m/2] \times [m+(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor)] + m \times [m/2] \times [m+(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor)] + m \times [m/2] \times [m+(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor)] + m \times [m/2] \times [m+(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor)] + m \times [m/2] \times [m+(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor)] + m \times [m/2] \times [m+(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor)] + m \times [m/2] \times [m+(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor)] + m \times [m/2] \times [m+(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor)] + m \times [m/2] \times [m+(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor)] + m \times [m/2] \times [m+(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor)] + m \times [m/2] \times [m+(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor)] + m \times [m/2] \times [m+(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor)] + m \times [m/2] \times [m+(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor)] + m \times [m/2] \times [m+(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor)] + m \times$

 $[n + (\sum_{i=1}^{m+1} \lfloor (i-1)/2 \rfloor)]$ Proof: Consider the graph $C_n + C_m$ where $n \neq m$ Clearly it contains n + m number of vertices.

$$e(v_i) = \lfloor n/2 \rfloor \text{ for all } i = 1, 2, 3, \dots, n$$

$$e(v_i) = \lfloor m/2 \rfloor \text{ for all } i = n+1, \dots, m$$

$$D(v_i) = 1+1+2+\dots+\lfloor (n-1)/2 \rfloor + \lfloor n/2 \rfloor + \underbrace{(1+1+\dots+1)}_{\text{(m times)}} \text{ for all } i = 1, 2, 3, \dots, n$$

$$= 0+0+1+1+2+\dots+\lfloor (n-1)/2 \rfloor + \lfloor n/2 \rfloor + \underbrace{(1+1+\dots+1)}_{\text{(m times)}}$$

$$= \lfloor \sum_{j=1}^{n+1} \lfloor (j-1)/2 \rfloor \rfloor + m \text{ for all } i = 1, 2, 3, \dots, n$$

$$D(v_i) = 1+1+2+\dots+\lfloor (m-1)/2 \rfloor + \lfloor m/2 \rfloor + \underbrace{(1+1+\dots+1)}_{\text{(n times)}}$$
for all $i = n+1, \dots, m$

$$= 0+0+1+1+2+\dots+\lfloor (m-1)/2 \rfloor + \lfloor m/2 \rfloor + \underbrace{(1+1+\dots+1)}_{\text{(n times)}}$$

$$= \lfloor \sum_{j=1}^{m+1} \lfloor (j-1)/2 \rfloor \rfloor + n \text{ for all } i = n+1, \dots, m$$

 $^{^{1*}}$ sujivenkit@gmail.com, 2 suryaarmstrong2579@gmail.com

DOI: http://doi.org/10.26524/cm45

$$\xi^{ds}(C_n + C_m) = \sum_{i=1}^{n+m} e(v_i)D(v_i)$$

$$= e(v_1)D(v_1) + \dots + e(v_n)D(v_n) + e(v_{n+1})D(v_{n+1}) + \dots + e(v_m)D(v_m)$$

$$= \lfloor n/2 \rfloor \left[\left(\sum_{j=1}^{n+1} \lfloor (j-1)/2 \rfloor \right) + m \right] + \dots + \lfloor n/2 \rfloor \left[\left(\sum_{j=1}^{n+1} \lfloor (j-1)/2 \rfloor \right) + m \right] + \dots + \lfloor m/2 \rfloor \left[\left(\sum_{j=1}^{m+1} \lfloor (j-1)/2 \rfloor \right) + n \right]$$

$$= n \times \lfloor n/2 \rfloor \times \left[m + \sum_{j=1}^{n+1} \lfloor (j-1)/2 \rfloor \right] + m \times \lfloor m/2 \rfloor \times \left[n + \left(\sum_{j=1}^{m+1} \lfloor (i-1)/2 \rfloor \right) \right]$$

Hence

$$\xi^{ds}(C_n + C_m) = n \times \lfloor n/2 \rfloor \left[m + \left(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor \right) \right] + m \times \lfloor m/2 \rfloor \left[n + \left(\sum_{i=1}^{m+1} \lfloor (i-1)/2 \rfloor \right) \right].$$

Remark 2.4 $\xi^{ds}(C_n + C_m) \neq \xi^{ds}(C_{n+m})$. Proof: By remark $2.2, \xi^{ds}(C_{n+m}) = (n + m) \times \lfloor (n+m)/2 \rfloor \times (\sum_{i=1}^{n+m+1} \lfloor (i-1)/2 \rfloor)$

By theorem
$$2.3,\xi^{ds}(C_n + C_m) = n \times \lfloor n/2 \rfloor \times [m + (\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor)] + m \times \lfloor m/2 \rfloor$$

$$\times [n + (\sum_{i=1}^{m+1} \lfloor (i-1)/2 \rfloor)]$$

Hence the result follows.

Theorem 2.5 For $n \geq 5$, $\xi^{ds}(\overline{C_n}) = 2n(n+1)$. Proof: $e(v_i) = 2$ for all $i = 1, 2, \dots, n$

$$D(v_i) = n + 1 \text{ for all } i = 1, 2, \dots, n$$

$$\xi^{ds}(\overline{C_n}) = \sum_{i=1}^n e(v_i)D(v_i)$$

$$= e(v_1)D(v_1) + \dots + e(v_n)D(v_n)$$

$$= 2(n+1) + \dots + 2(n+1)(n \text{ times})$$

$$= n \times 2 \times (n+1) = 2n(n+1).$$

Remark 2.6 For $n = 3, 4, (\overline{C_n})$ is a disconnected graph and so eccentric distance sum cannot be determined.

Remark 2.7 Eccentric distance sum cannot be determined for $(\overline{C_n + C_n})$. Proof: $(\overline{C_n + C_n})$ is the union of $(\overline{C_n})$ and $(\overline{C_n})$.

 $^{^{1*}}$ sujivenkit@gmail.com, 2 suryaarmstrong2579@gmail.com

DOI: http://doi.org/10.26524/cm45

That is $(\overline{C_n} + \overline{C_n}) = (\overline{C_n}) \cup (\overline{C_n})$ $(\overline{C_n}) \cup (\overline{C_n})$ is a disconnected graph.

Thus the result follows.

Theorem 2.8 For $n \ge 6$, $\xi^{ds}(\overline{C_n}) < \xi^{ds}(C_n)$. Proof: For $n \ge 6$, $n+1 < \sum\limits_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor$

$$\Rightarrow n(n+1) < n \sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor$$

$$\Rightarrow 2n(n+1) < 2n \sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor$$

$$< n \lfloor n/2 \rfloor \sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor$$

$$\Rightarrow 2n(n+1) < n \lfloor n/2 \rfloor \sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor$$

Thus $\xi^{ds}(\overline{C_n}) < \xi^{ds}(C_n)$ for $n \ge 6$.

Theorem 2.9 If two graphs are isomorphic then their eccentric distance sum is equal. Proof: Let G_1 and G_2 be two graphs which are isomorphic. Then the eccentricity of every vertex in G_1 and G_2 will be equal and the distance sum of every vertex in G_1 and G_2 will be equal. Hence the eccentric distance sum of the two graphs will be equal.

Result 2.10 $\xi^{ds}(C_n + C_n) = \xi^{ds}(K_{2n})$ for n = 3. Proof: The graph $C_3 + C_3$ is isomorphic to the complete graph with six vertices K_6 . Thus $\xi^{ds}(C_3 + C_3) = \xi^{ds}(K_6)$.

We can prove the same result by giving particular value for n=3

We know that
$$\xi^{ds}(C_n + C_n) = 2n \times \lfloor n/2 \rfloor \times [n + (\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor)]$$

$$\xi^{ds}(C_3 + C_3) = 2 \times 3 \times |3/2| [3 + 0 + 0 + 1 + 1] = 30$$

We know that $\xi^{ds}(K_n) = n(n-1)$

$$\xi^{ds}(K_6) = 6(6-1) = 30$$

 $\xi^{ds}(C_3 + C_3) = \xi^{ds}(K_6).$

Result 2.11 For n = 5, $\xi^{ds}(C_n) = \xi^{ds}(\overline{C_n})$. Proof: The cycle graph on 5 vertices, C_5 is the unique self- complementary graph (up to graph isomorphism)

 $^{^{1*}} sujivenkit@gmail.com, \, ^{2} suryaarmstrong 2579@gmail.com$

DOI: http://doi.org/10.26524/cm45

That is C_5 is isomorphic to its complement.

Thus $\xi^{ds}(C_5) = \xi^{ds}(\overline{C_5})$ Also, We can show the same result by giving particular value for n = 5 in the formula

$$\xi^{ds}(C_n) = n \times \lfloor n/2 \rfloor \times \left[\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor \right]$$

$$\xi^{ds}(C_5) = 5 \times \lfloor 5/2 \rfloor \times \left[\sum_{i=1}^{6} \lfloor (i-1)/2 \rfloor \right]$$

$$= 5 \times 2 \times \left[0 + 0 + 1 + 1 + 2 + 2 \right] = 60$$

$$\xi^{ds}(\overline{C_n}) = 2n(n+1) = 60$$

$$\xi^{ds}(C_5) = \xi^{ds}(\overline{C_5}).$$

Theorem 2.12 $\xi^{ds}(C_n) = \xi^{ds}(L(C_n))$. Proof: By observation 1.2, C_n is isomorphic to $L(C_n)$. Thus $\xi^{ds}(C_n) = \xi^{ds}(L(C_n))$.

Theorem 2.13 For n = 3, $\xi^{ds}(S(C_n)) = 4n \lceil n/2 \rceil \lceil 1 + \sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor \rceil$. Proof: $e(v_i) = \lceil n/2 \rceil$ for all $i = 1, 2, 3, \dots, n$ $e(v_i') = \lceil n/2 \rceil$ for all $i = 1, 2, \dots, n$ $D(v_i) = \lceil 2 \sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor \rceil + 2$ for all $i = 1, 2, 3, \dots, n$ $= 2[(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor) + 1]$ $D(v_i') = \lceil 2 \sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor \rceil + 2$ for all $i = 1, 2, 3, \dots, n$ $= 2[(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor) + 1]$ For n = 3 $\xi^{ds}(S(C_n)) = \sum_{u \in V(S(C_n))} e(u)D(u)$ $= e(v_1)D(v_1) + \dots + e(v_n)D(v_n) + e(v_1')D(v_1') + \dots + e(v_n')D(v_n')$ $= \lceil n/2 \rceil \times 2[(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor) + 1] + \dots + \lceil n/2 \rceil \times 2[(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor) + 1] + \dots + \lceil n/2 \rceil \times 2[(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor) + 1]$

^{1*}sujivenkit@gmail.com, ²suryaarmstrong2579@gmail.com

DOI: http://doi.org/10.26524/cm45

$$= 2n[\lceil n/2 \rceil \times 2[(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor) + 1]]$$
$$= 4n[\lceil n/2 \rceil [(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor) + 1]]$$

Hence $\xi^{ds}(S(C_n)) = 4n \lceil n/2 \rceil [1 + \sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor].$

Theorem 2.14 For $n \ge 4$, $\xi^{ds}(S(C_n)) = 4n \times \lfloor n/2 \rfloor \times [1 + (\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor)]$. Proof:

Clearly $S(C_n)$ has 2n number of vertices

$$e(v_i) = |n/2|$$
 for all $i = 1, 2, 3, \dots, n$

$$e(v_i') = \lfloor n/2 \rfloor$$
 for all $i = 1, 2, \dots, n$

$$D(v_i) = \left[2\left(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor\right)\right] + 2 \text{ for all } i = 1, 2, 3, \dots, n$$

$$= 2[(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor) + 1]$$

$$D(v_i') = \left[2(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor)\right] + 2 \text{ for all } i = 1, 2, 3, \dots, n$$

$$=2\left[\left(\sum_{i=1}^{n+1}\left\lfloor (i-1)/2\right\rfloor\right)+1\right]$$

$$\xi^{ds}(S(C_n)) = \sum_{u \in V(S(C_n))} e(u)D(u)$$

$$= e(v_1)D(v_1) + \dots + e(v_n)D(v_n) + e(v_1')D(v_1') + \dots + e(v_n')D(v_n')$$

$$= \lfloor n/2 \rfloor \times 2 \left[\left(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor \right) + 1 \right] + \dots + \lfloor n/2 \rfloor \times 2 \left[\left(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor \right) + 1 \right] + \dots + \lfloor n/2 \rfloor \times 2 \left[\left(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor \right) + 1 \right] + \dots + \lfloor n/2 \rfloor \times 2 \left[\left(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor \right) + 1 \right] + \dots + \lfloor n/2 \rfloor \times 2 \left[\left(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor \right) + 1 \right] + \dots + \lfloor n/2 \rfloor \times 2 \left[\left(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor \right) + 1 \right] + \dots + \lfloor n/2 \rfloor \times 2 \left[\left(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor \right) + 1 \right] + \dots + \lfloor n/2 \rfloor \times 2 \left[\left(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor \right) + 1 \right] + \dots + \lfloor n/2 \rfloor \times 2 \left[\left(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor \right) + 1 \right] + \dots + \lfloor n/2 \rfloor \times 2 \left[\left(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor \right) + 1 \right] + \dots + \lfloor n/2 \rfloor \times 2 \left[\left(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor \right) + 1 \right] + \dots + \lfloor n/2 \rfloor \times 2 \left[\left(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor \right) + 1 \right] + \dots + \lfloor n/2 \rfloor \times 2 \left[\left(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor \right) + 1 \right] + \dots + \lfloor n/2 \rfloor \times 2 \left[\left(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor \right) + 1 \right] + \dots + \lfloor n/2 \rfloor \times 2 \left[\left(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor \right) + 1 \right] + \dots + \lfloor n/2 \rfloor \times 2 \left[\left(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor \right) + 1 \right] + \dots + \lfloor n/2 \rfloor \times 2 \left[\left(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor \right) + 1 \right] + \dots + \lfloor n/2 \rfloor \times 2 \left[\left(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor \right) + 1 \right] + \dots + \lfloor n/2 \rfloor \times 2 \left[\left(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor \right) + 1 \right] + \dots + \lfloor n/2 \rfloor \times 2 \left[\left(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor \right) + 1 \right] + \dots + \lfloor n/2 \rfloor \times 2 \left[\left(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor \right) + 1 \right] + \dots + \lfloor n/2 \rfloor \times 2 \left[\left(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor \right) + 1 \right] + \dots + \lfloor n/2 \rfloor \times 2 \left[\left(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor \right) + 1 \right] + \dots + \lfloor n/2 \rfloor \times 2 \left[\left(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor \right) + 1 \right] + \dots + \lfloor n/2 \rfloor \times 2 \left[\left(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor \right) + 1 \right] + \dots + \lfloor n/2 \rfloor \times 2 \left[\left(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor \right) + 1 \right] + \dots + \lfloor n/2 \rfloor \times 2 \left[\left(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor \right) + 1 \right] + \dots + \lfloor n/2 \rfloor \times 2 \left[\left(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor \right) + 1 \right] + \dots + \lfloor n/2 \rfloor \times 2 \left[\left(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor \right) + 1 \right] + \dots + \lfloor n/2 \rfloor \times 2 \left[\left(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor \right) + 1 \right] + \dots + \lfloor n/2 \rfloor \times 2 \left[\left(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor \right) + 1 \right] + \dots + \lfloor n/2 \rfloor \times 2 \left[\left(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor \right) + 1 \right] + \dots + \lfloor n/2 \rfloor \times 2 \left[\left(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor \right) + 1 \right] + \dots + \lfloor n/2 \rfloor \times 2 \left[\left(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor \right) + 1 \right] + \dots + \lfloor$$

1] +
$$\lfloor n/2 \rfloor \times 2[(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor) + 1] + \dots + \lfloor n/2 \rfloor \times 2[(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor) + 1]$$

$$=2n[\lfloor n/2\rfloor\times 2[(\sum_{i=1}^{n+1}\lfloor (i-1)/2\rfloor)+1]]$$

$$=4n \lfloor n/2 \rfloor \left[\left(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor \right) + 1 \right]$$

Hence $\xi^{ds}(S(C_n)) = 4n \times \lfloor n/2 \rfloor \times [1 + (\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor)].$

Theorem 2.15 $\xi^{ds}(C_n) < \xi^{ds}(S(C_n))$ for $n \geq 3$. Proof: First we prove for $n \geq 4$.

^{1*}sujivenkit@gmail.com, ²suryaarmstrong2579@gmail.com

DOI: http://doi.org/10.26524/cm45

$$\begin{split} \sum_{i=1}^{n+1} \left\lfloor (i-1)/2 \right\rfloor &< 1 + \sum_{i=1}^{n+1} \left\lfloor (i-1)/2 \right\rfloor \\ \left\lfloor n/2 \right\rfloor \sum_{i=1}^{n+1} \left\lfloor (i-1)/2 \right\rfloor &< \left\lfloor n/2 \right\rfloor \left[1 + \sum_{i=1}^{n+1} \left\lfloor (i-1)/2 \right\rfloor \right] \\ n \left\lfloor n/2 \right\rfloor \sum_{i=1}^{n+1} \left\lfloor (i-1)/2 \right\rfloor &< n \left\lfloor n/2 \right\rfloor \left[1 + \sum_{i=1}^{n+1} \left\lfloor (i-1)/2 \right\rfloor \right] \\ n \left\lfloor n/2 \right\rfloor \sum_{i=1}^{n+1} \left\lfloor (i-1)/2 \right\rfloor &< n \left\lfloor n/2 \right\rfloor \left[1 + \sum_{i=1}^{n+1} \left\lfloor (i-1)/2 \right\rfloor \right] \\ \text{i.e. } n \left\lfloor n/2 \right\rfloor \sum_{i=1}^{n+1} \left\lfloor (i-1)/2 \right\rfloor &< 4n \left\lfloor n/2 \right\rfloor \left[1 + \sum_{i=1}^{n+1} \left\lfloor (i-1)/2 \right\rfloor \right] \\ \Rightarrow \xi^{ds}(C_n) &< \xi^{ds}(S(C_n)) forn \geq 4 \text{ For } n = 3 \end{split}$$

$$\sum_{i=1}^{n+1} \left\lfloor (i-1)/2 \right\rfloor &< 1 + \sum_{i=1}^{n+1} \left\lfloor (i-1)/2 \right\rfloor \\ \left\lfloor n/2 \right\rfloor \sum_{i=1}^{n+1} \left\lfloor (i-1)/2 \right\rfloor &< \left\lfloor n/2 \right\rfloor \left[1 + \sum_{i=1}^{n+1} \left\lfloor (i-1)/2 \right\rfloor \right] \\ &\leq \left\lceil n/2 \right\rceil \left[1 + \sum_{i=1}^{n+1} \left\lfloor (i-1)/2 \right\rfloor \right] \quad (\text{since } \left\lfloor n/2 \right\rfloor \leq \left\lceil n/2 \right\rceil) \\ \left\lfloor n/2 \right\rfloor \sum_{i=1}^{n+1} \left\lfloor (i-1)/2 \right\rfloor &< \left\lceil n/2 \right\rceil \left[1 + \sum_{i=1}^{n+1} \left\lfloor (i-1)/2 \right\rfloor \right] \\ &< 4n \left\lceil n/2 \right\rceil \left[1 + \sum_{i=1}^{n+1} \left\lfloor (i-1)/2 \right\rfloor \right] \end{split}$$

Thus
$$\xi^{ds}(C_n) < \xi^{ds}(S(C_n))$$
 for $n \ge 3$.

 $n \lfloor n/2 \rfloor \sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor < 4n \lceil n/2 \rceil \left[1 + \sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor \right]$

Theorem 2.16 $\xi^{ds}(S(\overline{C_n})) = 8n(n+2)$ for $n \geq 5$. Proof: $S(\overline{C_n})$ has 2n vertices

$$e(v_i) = 2$$
 for all $i = 1, 2, 3, \dots, n$
 $e(v'_i) = 2$ for all $i = 1, 2, \dots, n$
 $D(v_i) = 2(n+2)$ for all $i = 1, 2, 3, \dots, n$
 $D(v'_i) = 2(n+2)$ for all $i = 1, 2, 3, \dots, n$

^{1*}sujivenkit@gmail.com, ²suryaarmstrong2579@gmail.com

DOI: http://doi.org/10.26524/cm45

$$\xi^{ds}(S(\overline{C_n})) = \sum_{u \in V(S(\overline{C_n}))} e(u)D(u)$$

$$= e(v_1)D(v_1) + \dots + e(v_n)D(v_n) + e(v'_1)D(v'_1) + \dots + e(v'_n)D(v'_n)$$

$$= 2[2(n+2)] + \dots + 2[2(n+2)] + 2[2(n+2)] + \dots + 2[2(n+2)]$$

$$= 2n[2 \times (2(n+2))] = 8n(n+2).$$

Result 2.17 $\xi^{ds}(S(\overline{C_n})) = \xi^{ds}(S(C_n))$ for n = 5. Proof: Since C_n is isomorphic to its complement, the result follows.

$$\xi^{ds}(S(\overline{C_n})) = 8n(n+2)$$

$$\xi^{ds}(S(\overline{C_5})) = 8 \times 5(5+2)$$

$$= 280$$

$$\xi^{ds}(S(C_n)) = 4n \lfloor n/2 \rfloor \left[\left(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor \right) + 1 \right]$$

$$\xi^{ds}(S(C_5)) = 4 \times 5 \times \lfloor 5/2 \rfloor \left[\left(\sum_{i=1}^{6} \lfloor (i-1)/2 \rfloor \right) + 1 \right]$$

$$= 4 \times 5 \times 2[0+0+1+1+2+2+1]$$

$$= 280$$
(2)

From (1) and (2) $\xi^{ds}(S(\overline{C_n})) = \xi^{ds}(S(C_n))$ for n = 5.

Result 2.18 $\xi^{ds}(S(\overline{C_n})) < \xi^{ds}(S(C_n))$ for $n \geq 6$ Proof: We find the values of $\xi^{ds}(S(\overline{C_n}))$ and $\xi^{ds}(S(C_n))$ as follows:

When
$$n = 6$$
, $\xi^{ds}(S(\overline{C_n})) = 8n(n+2) = 384$

$$\xi^{ds}(S(C_n)) = 4n \lfloor n/2 \rfloor \left[\left(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor \right) + 1 \right] = 720$$

When
$$n = 7$$
, $\xi^{ds}(S(\overline{C_n})) = 8n(n+2) = 504$

$$\xi^{ds}(S(C_n)) = 4n \lfloor n/2 \rfloor \left[\left(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor \right) + 1 \right] = 1092$$

When
$$n = 8$$
, $\xi^{ds}(S(\overline{C_n})) = 8n(n+2) = 640$

$$\xi^{ds}(S(C_n)) = 4n \lfloor n/2 \rfloor \left[\left(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor \right) + 1 \right] = 2176$$

When
$$n = 9$$
, $\xi^{ds}(S(\overline{C_n})) = 8n(n+2) = 792$

^{1*}sujivenkit@gmail.com, ²suryaarmstrong2579@gmail.com

DOI: http://doi.org/10.26524/cm45

$$\xi^{ds}(S(C_n)) = 4n \lfloor n/2 \rfloor \left[\left(\sum_{i=1}^{n+1} \lfloor (i-1)/2 \rfloor \right) + 1 \right] = 3024$$

Thus we see that $\xi^{ds}(S(\overline{C_n})) < \xi^{ds}(S(C_n))$ for $n \ge 6$.

3. Conclusion

In this paper we have found the eccentric distance sum of, the sum of two cycles of length n, the eccentric distance sum of a cycle, the eccentric distance sum of the line graph of a cycle, the eccentric distance sum of the shadow graph of a cycle and we conclude that the eccentric distance sum of the complement of a cycle is less than the eccentric distance sum of a cycle for $n \geq 6$, the eccentric distance sum of a cycle is less than the eccentric distance sum of the shadow of a cycle for $n \geq 3$ and the eccentric distance sum of the shadow of complement of a cycle is less than the eccentric distance sum of the shadow of a cycle for $n \geq 6$.

References

- [1] Gary Chartrand, Ping Zhang, Introduction to Graph Theory, Tata McGraw-Hill Publications, edition (2006).
- [2] Gupta S, Singh M and Madan AK, Eccentric-distance sum: A novel graph invariant for predicting biological and physical properties, J. Math. Anal. Appl., 275, 2002, 386401.